La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs

نویسندگان

  • Roni M Lahr
  • Bruno D Fonseca
  • Gabrielle E Ciotti
  • Hiba A Al-Ashtal
  • Jian-Jun Jia
  • Marius R Niklaus
  • Sarah P Blagden
  • Tommy Alain
  • Andrea J Berman
چکیده

The 5'terminal oligopyrimidine (5'TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region

Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5' terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5' cap structure. Recent...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5′TOP sequence

La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resol...

متن کامل

IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F.

Binding of iron regulatory proteins (IRPs) to IREs located in proximity to the cap structure of ferritin H- and L-chain mRNAs blocks ferritin synthesis by preventing the recruitment of the small ribosomal subunit to the mRNA. We have devised a novel procedure to examine the assembly of translation initiation factors (eIFs) on regulated mRNAs. Unexpectedly, we find that the cap binding complex e...

متن کامل

MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila.

miRNAs silence their complementary target mRNAs by translational repression as well as by poly(A) shortening and mRNA decay. In Drosophila, miRNAs are typically incorporated into Argonaute1 (Ago1) to form the effector complex called RNA-induced silencing complex (RISC). Ago1-RISC associates with a scaffold protein GW182, which recruits additional silencing factors. We have previously shown that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017